Research on the Reliability of the Collection System of Heavy Haul Railway Based on the Dynamic Fault Tree

Ye Junqing, Zhen Zhiya, Yu Mingmin

School of Transportation Engineering ,Centre South University, Changsha,P.R.China, 410075 (E-mail: yjq29@mail.csu.edu.cn, zychen@xidian.edu.cn, 310107125@qq.com)

Abstract Reliability theory is applied to the reliability study of the collection System. Systematic analysis method, DFT and professional knowledge of railway transportation and mining engineering are used to do integrate analysis and system research about the characteristics, main research contents and methods of reliability of the system. Based on these methods, combined with example in the transportation work in Daqin line, final analysis result comes out, which provided reference for correlated problem.

Key words Heavy haul railway; Collection system; Reliability; Dynamic fault tree

1 Introduction

China's heavy haul railway has made great contribution on alleviating the tension situation of China's railway transportation capacity and promoting the national economic. The collection system of heavy haul railway is the origin of supply chain. Its security and reliability is not only the assurance of high efficiency and quantity of coal mining, but also influences organization of train flow and line smoothie. However, the study on the reliability of the Heavy-load Railway Cargo system is relatively inadequate. So finding out effective methods for collection system study is significant.

As one of the basic methods, Fault Tree analysis was initiated by Dr. H. A. Waston from the Bell Lab of the United States while he was studying the automatic control system's reliability of the Telephone dial-up machine. After researchers'40 years arduous work, it has been the indispensable method to study the system reliability in the field of nuclear ^[1], mining metallurgy ^[2], transportation ^[3] and computer software ^[4] etc...

This thesis will firstly analyze the specificity of the Heavy Haul Rail collection system. Dynamic fault tree model would be used in the reliability analysis. A new model for the reliability analysis of the system would be proposed and used to obtain the results of the reliability analysis.

2 Heavy Haul Rail Collection Systems

The Heavy Haul Rail collection system setting in the structure of heavy transport systems may be expressed as Figure 1

Figure 1 Relationship Diagram of Collection System and System of Heavy Haul Railway

Generally progresses are as follows: sending empty container by heavy haul train from the station of departure to loading station, loading through the loop or series loading line, returning to the departure technology station for the technical inspection of the train and the inspection operations of the locomotive, composing those trains from loading station that can not composed as an entire loading train as a heavy haul train. Finishing all these progresses, heavy haul train would depart from the technical station to the unloading station

2 Dynamic Fault Tree Reliability Analyses

2.1 Applicability of the reliability appraisal method

Reliability block diagram method, truth table method, Bayesian method, the minimum cut-set method, fault tree analysis, etc, are general methods for system reliability analysis. Although the traditional fault tree analysis method can not indicate the dynamic process of some system, and there

are some combinatorial explosion problems, however, after years of development, the improved classification based on the dynamic fault tree module is right for this collection system. The heavy haul collection system is in large size. It includes a certain amount of dynamic factors, so it belongs to those that can not be solved by non-static methods, which makes structured system more complicated. Therefore, this article uses the dynamic fault tree for heavy haul railway collection system.

2.2 System analysis

Analyzing the reliability of complex systems, the Dynamic Fault Tree uses DFLM algorithm for fault tree module partition. Fault tree are divided into static and dynamic sub-trees. The static sub-trees are supposed to be analyzed by using BDD, which the dynamic sub-trees will be transformed into Markov chain analysis.

3 System Analyses

Use DFLM searching to get the first steps and the end steps of the visit of all events, and get the minimum subtrees of the DFT. Then use BDD to static subtrees and Markov chain to dynamic subtrees to the analysis. In the system, every event is given a number as Table 1. Table 1 Numbers of DFT

				umpers				
T: The heavy load train plan could not be carried out at technolo gical station.	G1: Abnormal train departure due to technologi cal station problem	G3: influence of locomotive	E3: mismatched locomotive types					
			G7: assignment of crews(Dynamic Subtree)		E11:mismatched locomotive and driver			
					driver	fluence of pre	epared locomotive	
		G4: influence of traffic flow	E4: late train acceptance at junction station					
			G8: late train acceptation from loading station			E13: coal warehouse shortage		
				C0 ab	onormal g	G11: loading equipmen t fault	E14: conveyor belt fault	
				loading			E15: loading tower fault	
				process			E16: coal warehouse fault	
						E17: human fault		
				G10:	late	E18: abnormal section from loading site to technological station		
				technol	logical after ading	E19: unavailable receiving and		
				station train lo		departure tracks at technological station		
				8		E20: human fault		
		G5: influence of technological process at station	E5: train delay spread					
			E6: train operation equipment fault					
			E7: human fault					
		E1:overload veh	hicle detaching					
	G2: unavailabl e section ahead	G6: late unloading at unloading station	E8: unloading equipment fault					
			E9: abnormal unloading process					
			E10: mismatched coal category					
		E2: influence of construction						

Through calculation, failure probability of every event is got as Table 2.

Table 2 Fallure		Time Failure			
Top Events	Events	(h)	probability		
G11	E14	1	0.00007459		
	E15	10	0.00074564		
	E16	100	0.00743148		
G9	E13	1	0.00147335		
	G11	10	0.02122572		
	E17	100	0.58648272		
G10	E18	1	0.00109928		
	E19	10	0.01093859		
	E20	100	0.10415565		
G7	E11	1	0.00000064		
	E12	10	0.00000000		
		100	0.00590992		
G3	E3	1	0.00020060		
	G7	10	0.00199779		
		100	0.45715342		
G8	G9	1	0.00256906		
	G10	10	0.27501893		
		100	1.00000000		
G4	E4	1	0.00306404		
	G8	10	0.93638485		
		100	1.00000000		
G5	E5	1	0.00149273		
	E6	10	0.01482743		
	E7	100	0.13876210		
G6	E8	1	0.00109928		
	E9	10	0.01093859		
	E10	100	0.10415565		
G1	G3	1	0.00554138		
	G4	10	0.99992802		
	G5	100	1.00000000		
	E1				
G2	G6	1	0.00209686		
	E2	10	0.11252378		
		100	0.99997286		
	G1	1	0.00760836		
Ĩ	G2	10	0.99995455		
		100	1.00000000		

 Table 2
 Failure Probability of Every Event

And then we can also get the important probability relative to their top events as table 3

Top Events	Bottom	Important Probability				
	Events	T=1h	T=10h	T=100h		
G11	E14	0.99993601	0.99936034	0.99362785		
	E15	0.99993641	0.99936434	0.99366781		
	E16	0.99997840	0.99978416	0.99785396		
G9	E13	0.99952605	0.98872342	0.50867048		
	G11	0.99860123	0.98620223	0.93786609		
	E17	0.99892653	0.98276588	0.45272385		
G10	E18	0.99950048	0.99504282	0.95407396		
	E19	0.99900070	0.99006080	0.90579349		
	E20	0.99930060	0.99305300	0.93505093		
G7(Dynamic Subtree)	E11	0.00000128	8.19E-13	0.01181984		
	E12	0.00000128	8.19E-13	0.01181984		
G3	E3	0.99999936	1.00000000	0.56264588		
	G7	0.99980004	0.99800221	0.98903492		
G8	G9	0.99890305	0.91620657	1.00000000		
	G10	0.99852950	0.82858649	0.99997001		
G4	E4	0.99743579	0.06860215	0.04876564		
	G8	0.99950146	0.99968116	1.00000000		
G5	E5	0.99950667	0.99512171	0.95639110		
	E6	0.99860126	0.98611204	0.87059289		
	E7	0.99890715	0.98916417	0.90044447		
G6	E8	0.99950048	0.99504282	0.99950048		
	E9	0.99900070	0.99006080	0.99900070		
	E10	0.99930060	0.99305300	0.99930060		
G1	G3	0.99465918	0.01984966	1.00000000		
	G4	0.99751765	0.99998613	1.00000000		
	G5	0.99595008	0.13786411	0.99999906		
	E1	0.99525822	0.05412418	1.00000000		
G2	G6	0.999001701	0.991081645	0.999997146		
	E2	0.998902534	0.908248085	0.696940185		
Т	G1	0.99791712	0.99999997	1.00000000		
	G2	0.99448609	0.67543231	1.00000000		

 Table 3 Important Probability of Every Event(Relative to their top events)

4 Conclusion

• 1676 •

Through these data, we can easily get the failure probabilities of different events. The more possibility one events may happen, the more attention we should pay to. Besides this, we also get the important probability of every event to judge how much contribution this event make to top events' happening. Thus, this research help workers to manage the system better, and even optimize it.

References

 Cummings G E. Application of the Fault Tree Technique to A Nuclear Reactor Containment System[A].Reliability and Fault Tree Analysis[C]. Society for Industrial and Applied Mathematics, 1975:805-825

- [2] Goodman G V R. An Assessment of Coal Mine Escape Way Reliability Using Fault Tree Analysis[J]. Mining Science and Technology, 1988, 7(2):205-215
- [3] Huadoklin A, Rozman V.Safety Analysis of the Railway Traffic System[J]. Reliability Engineering and System Safety, 1992, 37(1):713
- [4] Oh Y, Yoo J, Cha S, Son H S.Software Safety Analysis of Function Block Diagrams Using Fault Trees[J].Reliability Engineering and System Safety , 2005, 88(3):215-228